重組合無(wú)細(xì)胞蛋白合成系統(tǒng)PUREfrex

PUREfrex??試劑盒是在東京大學(xué)的Takuya Ueda教授所發(fā)明的PUREsystem技術(shù)基礎(chǔ)上,新開發(fā)的一款重組合無(wú)細(xì)胞蛋白合成試劑盒。

該反應(yīng)系統(tǒng)由蛋白、核糖體、氨基酸和、NTPs組成[1,2]。進(jìn)行蛋白表達(dá)僅需將編碼目標(biāo)蛋白的模板DNA或mRNA加入到反應(yīng)體系中,然后孵育2-4小時(shí)即可完成反應(yīng),且無(wú)需擔(dān)心高背景影響到下游應(yīng)用。

本試劑盒是各組分經(jīng)過(guò)純化再重新組合而成,而非直接從大腸桿菌中提取,RNaseβ-半乳糖苷酶以及脂多糖(LPS)污染已受到嚴(yán)格控制。PUREfrex??試劑盒中的所有蛋白組分都不帶標(biāo)簽,因此目的蛋白可融合任意標(biāo)簽進(jìn)行純化和檢測(cè)。

http://www.boppard.cn/upfiles/images/201902/2615511502121122.png

◆特點(diǎn)

● 可以同時(shí)加入多種模板進(jìn)行反應(yīng),以合成Fab(帶二硫鍵)及多聚體等帶二級(jí)結(jié)構(gòu)的多肽

● 可合成活細(xì)胞難以合成的強(qiáng)毒性蛋白

● 可直接使用PCR產(chǎn)物來(lái)作為模板DNA

● 單位體積內(nèi)合成的蛋白量幾乎恒定,不隨反應(yīng)體積變化而產(chǎn)生顯著差異

● 操作簡(jiǎn)便,僅需在37℃孵育數(shù)小時(shí)

● 可以合成帶標(biāo)簽的蛋白用于下游純化和檢測(cè)

● 產(chǎn)品經(jīng)優(yōu)化升級(jí),合成量大大提高

◆功能及應(yīng)用

以下為PUREfrex???已經(jīng)過(guò)實(shí)驗(yàn)驗(yàn)證的應(yīng)用功能,如需進(jìn)一步數(shù)據(jù),請(qǐng)聯(lián)系在線客服索取技術(shù)資料。

驗(yàn)證起始密碼子后的密碼子對(duì)合成量的極大影響

已知若改變合成蛋白的起始密碼子后的2-6號(hào)氨基酸密碼子,合成蛋白的量會(huì)有很大的差異。這是以曲妥珠單抗(商品名赫賽?。┑腇ab重鏈(VH+CH1)為模型,制備56種不同的密碼子模板,比較其合成量。

膜蛋白的合成與純化

在帶His tag的Nanodisc上合成膜蛋白,進(jìn)行親和純化的步驟時(shí),即可從反應(yīng)產(chǎn)物中純化膜蛋白。

改善由于His tag 引起的N端合成量降低

α-Synuclein的N端帶有His tag時(shí)合成蛋白,根據(jù)His tag序列的不同,有時(shí)合成量會(huì)降低。合成量的降低,只需更改His tag的基因序列就可以改善。

帶His tag蛋白的純化方法

用PUREfrex??1.0?和PUREfrex??2.0試劑盒中含有的DHFR制備帶有His tag的模板DNA作為對(duì)照,并展示了用Ni親和柱純化后的結(jié)果。

混合了L鏈和H鏈模板的Fab抗體的合成實(shí)例

Fab是輕鏈(LC)和重鏈(HC)在分子內(nèi)形成二硫鍵并締合變活性型。向PUREfrex??2.0?反應(yīng)液中添加DS supplement合成Fab抗體后的結(jié)果顯示,合成了可以和抗原結(jié)合的活性Fab抗體。另外,通過(guò)優(yōu)化輕鏈(LC)和重鏈(HC)的模板DNA的添加比例,活性型Fab抗體的回收量也上漲了。

模板DNA序列和蛋白合成量

輕鏈(LC)和重鏈(HC)形成的Fab中,為了提高重鏈(HC)的合成量,通過(guò)向堿基序列中導(dǎo)入沉默突變,并改變5’端處的9個(gè)氨基酸的GC含量,調(diào)查其對(duì)合成量的結(jié)果顯示,AT含量越高,合成量就有可能越高。海報(bào)中的案例更短,揭示了5’端處的6個(gè)氨基酸的GC含量變化的效果。

 

PUREfrex?2.0?的合成能力

PUREfrex??1.0?和PUREfrex??2.0分別合成相同的蛋白,比較其合成量以及活性。

 

合成各種各樣的蛋白

通過(guò)向PUREfrex?(#PF001)的反應(yīng)體系中添加DNA(或mRNA)并進(jìn)行反應(yīng),不僅可以合成原核生物來(lái)源的蛋白,也可以合成真核生物來(lái)源的蛋白。例如,合成大腸桿菌的DHFR時(shí),一個(gè)試劑盒(500 μL)可以合成50 μg以上的DHFR。下圖的電泳是反應(yīng)產(chǎn)物。

proteins-PUREfrex-300x298.jpg

圖注:

● GFP : Green fluorescent protein *

● DHFR : Dihydrofolate reductase

● GST : Glutathione S-transferase

● β-Gal : β-Galactosidase

● bR : Bacteriorhodopsin

● Luc : Luciferase *

● CS : Citrate synthase *

● MDH : Malate dehydrogenase *

● Her2d1 : Domain1 of Her2 *

合成scFv

添加DnaK Mix,使用PUREfrex??以及PUREfrex??SS?合成scFv(single-chain Fv),檢測(cè)合成產(chǎn)物的活性。

合成微溶蛋白

使用添加了GroE Mix的PUREfrex??1.0,合成4類大腸桿菌蛋白(FadA、HemB、PepQ、PyrC)*1,檢測(cè)合成產(chǎn)物的可溶性。

*1)FadA, HemB, PepQ, PyrC是大腸桿菌內(nèi)作為GroE的底物被報(bào)道的蛋白

*1)(Ref; Fujiwara et al. (2010) EMBO J, 29, 1552-1564)

合成熒光素酶

使用添加了DnaK Mix的PUREfrex??合成熒光素酶,檢測(cè)合成產(chǎn)物的活性。

合成有SS鍵的蛋白

在不同濃度的大腸桿菌DsbC存在下合成含有復(fù)數(shù)的二硫鍵蛋白,vtPA(truncated version of tissue plasminogen activator)和AppA(大腸桿菌酸性磷酸酶),并比較它們的活性。

產(chǎn)品列表

產(chǎn)品編號(hào) 產(chǎn)品名稱 規(guī)格 備注信息
GFK-PF201-0.25-EX PUREfrex??2.0 1 kit 供250 μL反應(yīng)使用
GFK-PF201-0.25-5-EX 1 kit 供250 μLⅹ5次反應(yīng)使用
GFK-PF213-0.25-EX PUREfrex??2.1 1 kit 供250 μL反應(yīng)使用
GFK-PF213-0.25-5-EX 1 kit 供250 μLⅹ5次反應(yīng)使用
GFK-PF003-0.5-EX DnaK Mix 1 kit 供500 μL反應(yīng)使用
GFK-PF004-0.5-EX GroE Mix 1 kit 供500 μL反應(yīng)使用
GFK-PF005-0.5-EX DS supplement 1 kit 供500 μL反應(yīng)使用

備注:

PUREfrex??已升級(jí)到2.0,比第一代產(chǎn)品表達(dá)量更高,污染物水平更低;

PUREfrex??2.1比2.0更適合二硫鍵的形成。

PUREfrex™?Q&A

Q: 使用PUREfrex™?試劑盒是否可用于真核蛋白的合成?

: PUREfrex™ 是由E.coli的核糖體和翻譯因子組成的體外重組蛋白合成試劑盒,但也可以合成哺乳動(dòng)物和植物的蛋白。目標(biāo)蛋白的合成效率? ? ? ? ?取決于編碼蛋白的核苷酸序列,比如GC含量,稀有密碼子的含量。

 

Q: 使用PUREfrex™ 試劑盒可以合成多少蛋白?

: 這個(gè)取決于目標(biāo)蛋白。來(lái)自E.coli的二氫葉酸還原酶每毫升反應(yīng)液可合成150 μg。

 

Q: 是否可以合成大于100 kDa的蛋白?

A: 我們用該試劑盒合成了116 kDa的蛋白。

 

Q: 是否可以推薦PUREfrex™ 的反應(yīng)條件?

A: 推薦用該試劑盒在37℃反應(yīng)2~4小時(shí)。

 

Q: 是否可以合成和純化標(biāo)簽蛋白?

A: 可以使用任何標(biāo)簽,PUREfrex™ 試劑盒的所有蛋白成分都沒有用于純化或者檢測(cè)的標(biāo)簽。比如,合成后可用金屬螯合的樹脂純化帶有His

標(biāo)簽的目標(biāo)蛋白。

 

Q: 合成蛋白是否經(jīng)糖基化或者磷酸化修飾?

A: 不。不會(huì)發(fā)生翻譯后修飾,PUREfrex™ 試劑盒只是由翻譯因子組成。

 

Q: PUREfrex™ 試劑盒是否含有分子伴侶?

A: 不。PUREfrex™ 試劑盒不含有任何分子伴侶,但你可以添加分子伴侶,比如Hsp70。你可以自己制備。

 

Q: 用PUREfrex™ 試劑盒是否可合成含有二硫鍵的蛋白?

A: 不行。目標(biāo)蛋白合成不帶有二硫鍵,因?yàn)榉g反應(yīng)時(shí)有還原劑DTT。大多數(shù)需要二硫鍵才有活性的蛋白,會(huì)沒有活性。

 

Q: PUREfrex™ 是否可合成膜蛋白?

A: 一般情況,合成膜蛋白會(huì)形成聚集。為了獲得能夠插入到脂雙層的膜蛋白,需要在合成膜蛋白時(shí)添加脂質(zhì)體到PUREfrex™。

 

Q: 是否可合成帶有[35S] 甲硫氨酸或者 [3H] 亮氨酸的蛋白?

A: 添加放射性元素標(biāo)記的氨基酸可以合成放射性元素標(biāo)記的蛋白,比如[35S] 甲硫氨酸或者 [3H] 亮氨酸。PUREfrex™ 含有20種天然的氨基

酸,濃度都在0.5 mM。請(qǐng)優(yōu)化條件。

 

Q: 除了T7啟動(dòng)子外,是否可用其他啟動(dòng)子?

A: 我們推薦使用T7啟動(dòng)子的模板DNA,因?yàn)镻UREfrex™ 含有轉(zhuǎn)錄的RNA聚合酶。當(dāng)你使用其他聚合酶,制備的模板DNA要有相應(yīng)聚合酶的

合適啟動(dòng)子。

 

Q: 使用DHFR DNA(陽(yáng)性對(duì)照)無(wú)法獲得DHFR。

A: 該試劑盒由于某些原因失活。為了避免失活,請(qǐng)將該試劑盒存放在適當(dāng)穩(wěn)定??蛇M(jìn)行分裝,避免反復(fù)凍融影響試劑盒的使用效果?;蛘吒?/p>

試劑盒被核酸酶污染了。請(qǐng)使用不含核酸酶的水,試劑和材料。

Q: 使用試劑盒的DHFR可以得到DHFR。但是不能得到目標(biāo)蛋白,或者目標(biāo)蛋白量很低。

A: 1)改試劑盒由于某些原因失活了。為了避免失活,請(qǐng)將該試劑盒存放在適當(dāng)?shù)臏囟炔⑶疫M(jìn)行分裝(避免反復(fù)凍融)

A: 2)可以受核酸酶污染。為了避免核酸酶污染,請(qǐng)使用不含核酸酶的水,試劑和材料。

A: 3)制備的DNA模板不準(zhǔn)確。需要制備含有T7啟動(dòng)子,核糖體結(jié)合位點(diǎn),起始密碼子,終止密碼子的DNA模板。

A: 4)轉(zhuǎn)錄的二級(jí)結(jié)構(gòu)會(huì)阻止翻譯反應(yīng)。這種情況,請(qǐng)優(yōu)化模板的順序,解決二級(jí)結(jié)構(gòu)的問題。

  • 參考文獻(xiàn)
[1] Murakami, S., Matsumoto, R., & Kanamori, T.. (2019). Constructive approach for synthesis of a functional IgG using a reconstituted cell-free protein synthesis system.?Scientific reports?9(1), 671.
[2] Doerr, A., de Reus, E., van Nies, P., van der Haar, M., Wei, K., Kattan, J., et al. (2019). Modelling cell-free RNA and protein synthesis with minimal systems.?Physical biology,?16, 025001.
[3] Dopp, J., Tamiev, D., & Reuel, N. F.. (2019). Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract.?Biotechnology advances,?37(1), ? 246-258.
[4] Marsden, A. P., Hollins, J. J., O’Neill, C., Ryzhov, P., Higson, S., Mendon?a, C. A., et al. (2018). ? Investigating the Effect of Chain Connectivity on the Folding of a Beta-Sheet ? Protein On and Off the Ribosome.?Journal of molecular biology,?430, 5207-5216.
[5] Tian, P., Steward, A., Kudva, R., Su, T., Shilling, P. J., Nickson, A. A., et al. (2018). The Folding Pathway of an Ig Domain is Conserved On and Off the Ribosome.?Proceedings of the National Academy of Sciences, 201810523.,?115(48), E11284-E11293.
[6] Gessesse, B., Nagaike, T., Nagata, K., Shimizu, Y., & Ueda, T.. (2018). G-Protein Coupled Receptor Protein Synthesis on a Lipid Bilayer Using a Reconstituted Cell-Free Protein Synthesis System.?Life,?8(4), 54.
[7] Kamiya, N., Ohama, Y., Minamihata, K., Wakabayashi, R., & Goto, M.. (2018). Liquid Marbles as an Easy‐to‐Handle Compartment for Cell‐Free Synthesis and In Situ Immobilization of Recombinant Proteins.?Biotechnology journal,13(12).
[8] Hayase, G., & Nomura, S. I. M.. (2018). Large-Scale Preparation of Giant Vesicles by Squeezing a Lipid-Coated Marshmallow-like Silicone Gel in a Buffer.?Langmuir,?34(37), 11021-11026.
[9] Fujiwara, K., Ito, K., & Chiba, S.. (2018). MifM-instructed translation arrest involves nascent chain interactions with the exterior as well as the interior of the ribosome.?Scientific reports,?8(1), 10311.
[10] Sugimoto, S., Arita-Morioka, K. I., Terao, A., Yamanaka, K., Ogura, T., & Mizunoe, Y.. (2018). Multitasking of Hsp70 chaperone in the biogenesis of bacterial functional ? amyloids.?Communications Biology,?1(1), 52.
[11] Kamiya, Y., Arimura, Y., Ooi, H., Kato, K., Liang, X. G., & Asanuma, H.. (2018). Development of Visible‐Light‐Responsive RNA Scissors Based on a 10–23 DNAzyme.?ChemBioChem.?19, 1305-1311.
[12] Fujii, S., Sawa, T., Motohashi, H., & Akaike, T.. (2018). Persulfide synthases that are functionally coupled with translation mediate sulfur respiration in mammalian cells.?British Journal of Pharmacology,?176(4), 607-615.
[13] Komura, R., Aoki, W., Motone, K., Satomura, A., & Ueda, M.. (2018). High-throughput evaluation of T7 promoter variants using biased randomization and DNA barcoding.?PLOS ONE,?13(5), e0196905.
[14] van Nies, P., Westerlaken, I., Blanken, D., Salas, M., Mencía, M., & Danelon, C.. (2018). ? Self-replication of DNA by its encoded proteins in liposome-based synthetic cells.?Nature communications,?9(1), 1583.
[15] Furusato, T., Horie, F., Matsubayashi, H. T., Amikura, K., Kuruma, Y., & Ueda, T.. (2018). De novo synthesis of basal bacterial cell division proteins FtsZ, FtsA, and ZipA inside giant vesicles.?ACS synthetic biology,?7(4), 953-961.
[16] Natan, E., Endoh, T., Haim-Vilmovsky, L., Flock, T., Chalancon, G., Hopper, J. T., et al. (2018). Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins.?Nature structural & molecular biology,?25(3), 279.
[17] Ito, N., Katoh, K., Kushige, H., Saito, Y., Umemoto, T., Matsuzaki, Y., et al. (2018). Ribosome incorporation into somatic cells promotes lineage transdifferentiation towards multipotency.?Scientific reports,?8(1), 1634.
[18] Reyes, S. G., Kuruma, Y., & ? Tsuda, S.. (2017). Uncovering cell-free protein expression dynamics by a promoter library with diverse strengths.?bioRxiv, 214593.
[19] Katano, Y., Li, T., Baba, M., Nakamura, M., Ito, M., Kojima, K., et al. (2017). Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system.?Bioscience, biotechnology, and biochemistry,?81(12), 2339-2345.
[20] Chadani, Y., Niwa, T., Izumi, T., Sugata, N., Nagao, A., Suzuki, T., et al. (2017). Intrinsic ribosome destabilization underlies translation and provides an organism with a strategy of environmental sensing.?Molecular cell,?68(3), 528-539.
[21] Akaike, T., Ida, T., Wei, F. Y., Nishida, M., Kumagai, Y., Alam, M. M., et al. (2017). Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics.?Nature communications,?8(1), 1177.
[22] Shepherd, T. R., Du, L., Liljeruhm, J., Wang, J., Sj?din, M. O., Wetterhall, M., et al. (2017). De novo design and synthesis of a 30-cistron translation-factor module.?Nucleic acids research,?45(18), 10895-10905.
[23] Matsumoto, K. I., Yamazaki, K., Kawakami, S., Miyoshi, D., Ooi, T., Hashimoto, S., & Taguchi, S.. (2017). In vivo target exploration of apidaecin based on Acquired Resistance induced by Gene Overexpression (ARGO assay).?Scientific reports,?7(1), 12136.
[24] Judd, J., Boucher, N., Van Roey, E., Gray, T. A., & Derbyshire, K. M.. (2017). Application of distributive conjugal DNA transfer in Mycobacterium smegmatis to establish a genome-wide synthetic genetic array.?Journal of Bacteriology,?199(20).
[25] Goto, Y., Murakami, H., & Suga, H.. (2008). Initiating translation with D-amino acids.?RNA,?14(7), 1390–1398.
[26] Ueta, M., Wada, C., Bessho, Y., ? Maeda, M., & Wada, A.. (2017). Ribosomal protein L31 in Escherichia coli contributes to ribosome subunit association and translation, whereas short L31 cleaved by protease 7 reduces both activities.?Genes to Cells,?22(5), 452-471.
[27] Nilsson, O. B., Nickson, A. A., Hollins, J. J., Wickles, S., Steward, A., Beckmann, R., et al. (2017). Cotranslational folding of spectrin domains via partially structured states.?Nature structural & molecular biology,?24(3), 221.
[28] Fan, Y., Hoshino, T., & Nakamura, A.. (2017). Identification of a VapBC toxin–antitoxin system in a thermophilic bacterium Thermus thermophilus HB27.?Extremophiles,?21(1), 153-161.
[29] Scott, A., Noga, M. J., de Graaf, P., Westerlaken, I., Yildirim, E., & Danelon, C.. (2016).? Cell-free phospholipid biosynthesis by gene-encoded enzymes reconstituted in liposomes.?PloS one,?11(10), e0163058.
[30] Nakayama, M., Komiya, S., Fujiwara, K., Horisawa, K., & Doi, N.. (2016). In vitro selection of bispecific diabody fragments using covalent bicistronic DNA display.?Biochemical and biophysical research communications,?478(2), 606-611.
[31] Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., & Ueda, T.. (2001). Cell-free translation reconstituted with purified components.?Nature Biotechnology,?19(8), 751-755.
[32] Radomska, K. A., Ordo?ez, S. R., W?sten, M. M., Wagenaar, J. A., & van Putten, J. P.. (2016). Feedback control of Campylobacter jejuni flagellin levels through reciprocal binding ? of FliW to flagellin and the global regulator CsrA.?Molecular microbiology,?102(2), 207-220.
[33] Nilsson, O. B., Müllerlucks, A., Kramer, G., Bukau, B., & Heijne, G. V.. (2016). Trigger factor reduces the force exerted on the nascent chain by a cotranslationally folding protein.?Journal of Molecular Biology,?428(6), 1356-1364.
[34] Chadani, Y., Niwa, T., Chiba, S., Taguchi, H., & Ito, K.. (2016). Integrated in vivo and in vitro nascent chain profiling reveals widespread translational pausing.?Proceedings of the National Academy of Sciences,?113(7), E829–E838.
[35] Ando, M., Akiyama, M., Okuno, D., Hirano, M., Ide, T., Sawada, S., et al. (2016). Liposome chaperon in cell-free membrane protein synthesis: one-step preparation of KcsA-integrated liposomes and electrophysiological analysis by the planar bilayer method.?Biomaterials science,?4(2), 258-264.
[36] Shiraishi, A., Mochizuki, S., Miyakoshi, A., Kojoh, K., & Okada, Y.. (2016). Development of human neutralizing antibody to ADAMTS4 (aggrecanase-1) and ADAMTS5 (aggrecanase-2).?Biochemical and biophysical research communications,?469(1), ? 62-69.
[37] Nagumo, Y., Fujiwara, K., Horisawa, K., Yanagawa, H., & Doi, N.. (2015). PURE mRNA display for in vitro selection of single-chain antibodies.?The Journal of Biochemistry,?159(5), 519-526.
[38] Niwa, T., Sasaki, Y., Uemura, E., Nakamura, S., Akiyama, M., Ando, M.,et al. (2015).? Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system.?Scientific reports,?5(1), 18025.
[39] Yamamoto, H., Shima, T., Yamaguchi, M., Mochizuki, Y., Hoshida, H., Kakuta, S.,et al. (2015). The thermotolerant yeast Kluyveromyces marxianus is a useful organism for ? structural and biochemical studies of autophagy.?Journal of Biological Chemistry,?290(49), 29506–29518.
[40] Ishii, E., Chiba, S., Hashimoto, N., Kojima, S., Homma, M., Ito, K., et al. (2015). Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria.Proceedings of the National Academy of Sciences,?112(40), E5513-E5522.
[41] Nilsson, O. B., Hedman, R., Marino, J., Wickles, S., Bischoff, L., Johansson, M., et al. (2015). ? Cotranslational protein folding inside the ribosome exit tunnel.?Cell reports,?12(10), 1533-1540.
[42] Kuruma, Y., & Ueda, T..? (2016). Corrigendum: the pure system for the cell-free synthesis of membrane ? proteins.?Nature Protocols,?11(3), 616.
[43] Morita, M., Onoe, H., Yanagisawa, M., Ito, H., Ichikawa, M., Fujiwara, K., et al. (2015). Droplet‐Shooting and Size‐Filtration (DSSF) Method for Synthesis of Cell‐Sized Liposomes with Controlled Lipid Compositions.?ChemBioChem,?16(14), 2029-2035.
[44] Yamashita, H., Morita, M., Sugiura, H., Fujiwara, K., Onoe, H., & Takinoue, M.. (2015). Generation of monodisperse cell-sized microdroplets using a centrifuge-based axisymmetric co-flowing microfluidic device.?Journal of bioscience and bioengineering,?119(4), 492-495.
[45] Nies, V., & Pauline.. (2015). monitoring mrna and protein levels in bulk and in model vesicle-based artificial cells.?Methods in Enzymology,?550, 187-214.
[46] Ichihashi, N., Kobori, S., & Yomo, T..(2015). Simple Identification of Two Causes of Noise in an Aptazyme System by Monitoring Cell-Free Transcription.?Methods in Enzymology,?550, 93-107.
[47] Kogure, H., Handa, Y., Nagata, M., Kanai, N., Peter Güntert, & Kubota, K., et al. (2014). Identification of residues required for stalled-ribosome rescue in the codon-independent release factor yaej.?Nucleic Acids Research,?42(5), ? 3152.
[48] Shimizu, Y., Kuruma, Y., Kanamori, T., & Ueda, T.. (2014). The pure system for protein production.?Methods in Molecular Biology,?1118(1118), 275-284.
[49] Jackson, K., Kanamori, T., Ueda, T., & Fan, Z. H.. (2014). Protein synthesis yield increased 72 times in the cell-free pure system.?Integrative Biology,?6(8),781-788.
[50] Matsubayashi, H., Kuruma, Y., & Ueda, T.. (2014). In vitro synthesis of the e. coli sec translocon from dna.?Angewandte Chemie International Edition in English,?53(29), ? 7535-7538.
[51] Nourian, Z., Scott, A., & Danelon, C.. (2014). Toward the assembly of a minimal divisome.?Systems and Synthetic Biology,?8(3), 237-247.
[52] Sugimoto, N.. (2014). Noncanonical structures and their thermodynamics of dna and rna under molecular crowding: beyond the watson-crick double helix.?Int Rev Cell Mol Biol,?307, 205-273.
[53] Fujiwara, K., Katayama, T., & Nomura, S. I.. (2013). Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system.?Nucleic Acids Research,?41(14), 7176-7183.
[54] Endoh, T., Kawasaki, Y., & Sugimoto, N.. (2013). Translational halt during elongation caused by g-quadruplex formed by mrna.?Methods,?64(1), 73-78.
[55] Hong, S. H., Ntai, I., Haimovich, A. D., Kelleher, N. L., Isaacs, F. J., & Jewett, M. C.. (2014). Cell-free protein synthesis from a release factor 1 deficient, escherichia coli, activates efficient and multiple site-specific nonstandard amino acid incorporation.?ACS Synthetic Biology,?3(6), 398-409.
[56] Chizzolini, F., Forlin, M., Cecchi, D., & Mansy, S. S.. (2013). Gene position more strongly ? influences cell-free protein expression from operons than t7 transcriptional promoter strength.?ACS Synthetic Biology,?3(6).
[57] Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y., & Yomo, T.. (2013). In vitro evolution of -hemolysin using a liposome display.?Proceedings of the National Academy of Sciences,?110(42), 16796-16801.
[58] Nies, V., Pauline, Nourian, Zohreh, Kok, & Maurits, et al. (2013). Unbiased tracking of the progression of mrna and protein synthesis in; bulk and in liposome-confined reactions.?Chembiochem A European Journal of Chemical Biology,?14(15), 1963-1966.
[59] Niederholtmeyer, H., Stepanova, V., & Maerkl, S. J.. (2013). Implementation of cell-free biological networks at steady state.?Proceedings of the National Academy of Sciences,?110(40), 15985-15990.
[60] Lentini, R., Forlin, M., Martini, L., Bianco, C. D., Spencer, A. C., & Torino, D., et al. (2013). ? Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology.?ACS Synthetic Biology,?2(9), 482-489.
[61] Woolstenhulme, C. J., Parajuli, ? S., Healey, D. W., Valverde, D. P., Petersen, E. N., & Starosta, A. L., et al. (2013). Nascent peptides that block protein synthesis in bacteria.?Proceedings of the National Academy of Sciences,?110(10), E878-E887.
[62] Jewett, M. C., Fritz, B. R., Timmerman, L. E., & Church, G. M.. (2014). In vitro integration of? ribosomal rna synthesis, ribosome assembly, and translation.?Molecular Systems Biology,?9(1), 678-678.
[63] Niederholtmeyer, H., Xu, L., & Maerkl, S. J.. (2013). Real-time mrna measurementduring an in vitro transcription and translationreaction using binary probes.?ACS Synthetic Biology,?2(8), 411-417.
[64] Endoh, T., Kawasaki, Y., & Sugimoto, N.. (2013). Stability of rna quadruplex in open reading frame determines proteolysis of human estrogen receptor α.?Nucleic Acids Research,?41(12), 6222-6231.
[65] Endoh, T., Kawasaki, Y., & Sugimoto, N.. (2013). Suppression of gene expression by g-quadruplexes in open reading frames depends on g-quadruplex stability.?Angewandte Chemie International Edition,?52(21), 5522-5526.
[66] Lee, K. B., Kim, H. C., Kim, D.? M., Kang, T. J., & Suga, H.. (2013). Comparative evaluation of two cell-free protein synthesis systems derived from escherichia coli for genetic code reprogramming.?Journal of Biotechnology,?164(2), 330-335.
[67] Nakamura, Y., Ogura, M., Ogura, K., Tanaka, D., & Inagaki, N.. (2012). Sirt5 deacetylates and activates urate oxidase in liver mitochondria of mice.?FEBS letters,?586(23), 4076-4081.
[68] Fujino, Y., Fujita, R., Wada, K., Fujishige, K., & Ueda, T.. (2012). Robust in vitro affinity ? maturation strategy based on interface-focused high-throughput mutational scanning.?Biochemical and Biophysical Research Communications,?428(3), 395-400.
[69] Venancio-Marques, A., Liu, Y.-J., Diguet, A., di Maio, T., Gautier, A., & Baigl, D. (2012). ? Modification-Free Photocontrol of β-Lactam Conversion with Spatiotemporal Resolution.?ACS Synthetic Biology,?1(11), 526–531.
[70] Nicolini, C., Bragazzi, N., & Pechkova, E.. (2012). Nanoproteomics enabling personalized ? nanomedicine.?Advanced Drug Delivery Reviews,?64(13), 1522-1531.
[71] Matsuura, T., Hosoda, K., Kazuta, Y., Ichihashi, N., Suzuki, H., & Yomo, T.. (2012). Effects of compartment size on the kinetics of intracompartmental multimeric protein synthesis.?ACS Synthetic Biology,?1(9), 431-437.
[72] Ong, H. J., Siau, J. W., Zhang, J. B., Hong, M., Flotow, H., & Ghadessy, F.. (2012). Analysis of p53 binding to dna by fluorescence imaging microscopy.?Micron,?43(9), 996-1000.
[73] Shimizu, Y.. (2012). Arfa recruits rf2 into stalled ribosomes.?Journal of molecular biology,?423(4), 624-631.
[74] Nagano, T., Kojima, K., Hisabori, T., Hayashi, H., Morita, E. H., & Kanamori, T., et al. (2012).? Elongation factor g is a critical target during oxidative damage to the translation system of escherichia coli.?Journal of Biological Chemistry,?287(34), 28697-28704.
[75] Ying, & B.-W. (2003). A novel screening system for self-mrna targeting proteins.?Journal ? of Biochemistry,?133(4), 485-491.
[76] Kobori, S., Ichihashi, N., Kazuta, Y., Matsuura, T., & Yomo, T.. (2012). Kinetic analysis of ? aptazyme-regulated gene expression in a cell-free translation system: modeling of ligand-dependent and -independent expression.?Rna-a Publication of the Rna Society, 18(8), 1458-1465.
[77] Bruder, J., Siewert, K., Obermeier, B., Malotka, J., Scheinert, P., & Kellermann, J., et al. ? (2012). Target specificity of an autoreactive pathogenic human γδ-T cell receptor in myositis.?Journal of Biological Chemistry,?287(25), 20986-20995.
[78] Nishimura, K., Matsuura, T., Nishimura, K., Sunami, T., Suzuki, H., & Yomo, T.. (2012). Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry.?Langmuir,?28(22), 8426-8432.
[79] Okano, T., Matsuura, T., Kazuta, Y., Suzuki, H., & Yomo, T.. (2012). Cell-free protein synthesis from a single copy of dna in a glass microchamber.?Lab on a Chip,?12(15), 2704.
[80] Guarino, C., & Delisa, M. P.. (2012). A prokaryote-based cell-free translation system that efficiently synthesizes glycoproteins.?Glycobiology,?22(5), 596-601.
[81] St?gbauer, T., Windhager, L., Zimmer, R., & R?dler, J. O. (2012). Experiment and mathematical modeling of gene expression dynamics in a cell-free system.?Integrative Biology,?4(5), 494-501.
[82] Do, P. M., Varanasi, L., Fan, S., Li, C., Kubacka, I., & Newman, V., et al. (2012). Mutant p53 cooperates with ets2 to promote etoposide resistance.?Genes & Development,?26(8), 830-845.
[83] Kriechbaumer, V., Wang, P., Hawes, C., & Abell, B. M.. (2012). Alternative splicing of the auxin biosynthesis gene yucca4 determines its subcellular compartmentation.?The Plant Journal,?70(2), 292-302.
[84] Zhu, X., Ahmad, S. M., Aboukhalil, A., Busser, B. W., & Michelson, A. M.. (2012). Differential ? regulation of mesodermal gene expression by drosophila cell type-specific forkhead transcription factors.?Development,?139(8), 1457-1466.
[85] Guillen Schlippe, Y. V., Hartman, M. C. T., Josephson, K., & Szostak, J. W.. (2012). in vitror, ? selection of highly modified cyclic peptides that act as tight binding inhibitors.?Journal of the American Chemical Society,?134(25), 10469-10477.
[86] Takahashi, S., Tsuji, K., Ueda, T., & Okahata, Y.. (2012). Traveling time of a translating ribosome along messenger rna monitored directly on a quartz crystal microbalance.?Journal of the American Chemical Society,?134(15), 6793-6800.
[87] Papenfort, K., Podkaminski, D., Hinton, J. C. D., & J?rg Vogel. (2012). The ancestral sgrs rna discriminates horizontally acquired salmonella mrnas through a single g-u wobble pair.?Proceedings of the National Academy of Sciences,?109(13), E757-764.
[88] Danelon, C., Nourian, Z., Roelofsen, W., & Westerlaken, I.. (2012). Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane.?Biophysical ? Journal,?102(3), 715a.
[89] Rosenblum, G., Chen, C., Kaur, J., Cui, X., Goldman, Y. E., & Cooperman, B. S.. (2012). Real-time assay for testing components of protein synthesis.?Nucleic Acids Research,?40(12), e88-e88.
[90] Machida, K., Masutani, M., Kobayashi, T., Mikami, S., Nishino, Y., & Miyazawa, A., et al. (2012). Reconstitution of the human chaperonin cct by co-expression of the eight ? distinct subunits in mammalian cells.?Protein Expression & Purification,?82(1), 61-69.
[91] Barendt, P. A., Shah, N. A., Barendt, G. A., Sarkar, C. A., & Hughes, D.. (2012). Broad-specificity mrna–rrna complementarity in efficient protein translation.?PLoS Genetics,?8(3), e1002598.
[92] Wang, H. H., Huang, P.-Y., Xu, G., Haas, W., Marblestone, A., Li, J. et al.. (2012). Multiplexed in Vivo His-Tagging of Enzyme Pathways for in Vitro Single-Pot Multienzyme Catalysis.?ACS Synthetic Biology,?1(2), 43–52.
[93] Holmqvist, E., Unoson, C., Reimeg?rd, J., & Wagner, E. G. H. (2012). A mixed double negative feedback loop between the sRNA MicF and the global regulator Lrp.?Molecular Microbiology,?84(3), 414–427.
[94] Endoh, T., Kawasaki, Y., & Sugimoto, N.. (2012). Synchronized translationfor detection of temporalstalling of ribosome during single-turnover translation.?Analytical Chemistry,?84(2), 857-861.
[95] Marcin, D., Reynolds, C. B., & Fairweather, N. F.. (2012). Clostridium difficile cell wall protein cwpv undergoes enzyme-independent intramolecular autoproteolysis.?Journal of Biological Chemistry,?287(2), 1538-1544.
[96] Atsushi, O., Masayoshi, H., Shinsuke, S., & Yasuhiro, A.. (2012). A concept for selection of ? codon-suppressor trnas based on read-through ribosome display in an in vitro compartmentalized cell-free translation system.?Journal of Nucleic Acids,?2012, 538129.
[97] Lazzeriniospri, L., Stano, P., Luisi, P. L., & Marangoni, R.. (2012). Characterization of the emergent properties of a synthetic quasi-cellular system.?Bmc Bioinformatics,?13(Suppl 4), S9.
[98] Nobuhide, D., Natsuko, Y., ? Hideaki, M., Yasutsugu, Y., Tetsuya, N., & Nobutaka, M., et al. (2012). Dna display selection of peptide ligands for a full-length human g protein-coupled receptor on cho-k1 cells.?PLoS ONE,?7(1), e30084.
[99] Harada, R., Furumoto, S., Yoshikawa, T., Ishikawa, Y., Shibuya, K., & Okamura, N., et al. (2012). Synthesis of [11c]interleukin 8 using a cell-free translation system and l-[11c]methionine.?Nuclear Medicine & Biology,?39(1), 155-160.
[100] Wang, X., Morgan, R., Nugent, M. L., Gupta, Y., Xu, S., & Fomenkov, A., et al. (2011). Characterization of type ii and iii restriction-modification systems from bacillus cereus strains atcc 10987 and atcc 14579.?Journal of Bacteriology,?194(1), 49-60.
[101] Hufton, S. E.. (2012). Affinity maturation and functional dissection of a humanised anti-rage monoclonal antibody by ribosome display.?Methods in Molecular Biology,?805, 403-422.
[102] Ohashi, H., Kanamori, T., Osada, E., Akbar, B. K., & Ueda, T.. (2012). Peptide screening using pure ribosome display.?Methods in Molecular Biology,?805(1), 251-259.
[103] Nishikawa, T., Sunami, T., Matsuura, T., & Yomo, T. (2012). Directed Evolution of Proteins throughIn VitroProtein Synthesis in Liposomes.?Journal of Nucleic Acids,?2012, 1–11.
[104] Takeshi, S., Hiroshi, Y., & Nobuhide, D.. (2012). in vitro selection of fab fragments by mrna display and gene-linking emulsion pcr.?Journal of Nucleic Acids,?2012, 1-9.
[105] Karig, D. K., Iyer, S., Simpson, M. L., & Doktycz, M. J.. (2012). Expression optimization and synthetic gene networks in cell-free systems.?Nucleic Acids Research,?40(8), 3763-3774.
[106] Niwa, T., Kanamori, T., Ueda, T., & Taguchi, H..(2012). Global analysis of chaperone effects using a reconstituted cell-free translation system.?Proc Natl Acad Sci USA,?109, 8937-8942.
[107] Kaiser, C., Goldman, D., Tinoco, I., & Bustamante, C.. (2012). The ribosome modulates nascent protein folding.?Biophysical Journal,?102(3), 68a.
[108] Wang, W., Hara, S., Liu, M., Aigaki, T., Shimizu, S., & Ito, Y.. (2011). Polypeptide aptamer selection using a stabilized ribosome display.?Journal of? Bioscience & Bioengineering,?112(5), 515-517.
[109] Gonza?Lez, D., Lokhande, N., Vadde, S., Zhao, Q., Cassill, A., & Renthal, R.. (2011). Luminescence resonance energy transfer in the cytoplasm of live escherichia coli cells.?Biochemistry,?50(32), 6789-6796.
[110] Mallam, A. L., & Jackson, S. E.. (2011). Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins.?Nature Chemical Biology,?8(2), 147-153.
[111] Hensley, M. P., Tierney, D. L., & Crowder, M. W.. (2011). Zn(ii) binding to escherichia coli 70s ribosomes.?Biochemistry,?50(46), 9937-9939.
[112] Pereira de Souza, T., Steiniger, F., Stano, P., Fahr, A., & Luisi, P. L. (2011). Spontaneous Crowding of Ribosomes and Proteins inside Vesicles: A Possible Mechanism for the Origin of Cell Metabolism.?ChemBioChem,?12(15), 2325–2330.
[113] Grimm, S., Yu, F., & Nygren, P.-?. (2011). Ribosome Display Selection of a Murine IgG1 Fab Binding Affibody Molecule Allowing Species Selective Recovery Of Monoclonal ? Antibodies.?Molecular Biotechnology,?48(3), 263–276.
[114] Yanagida, H., Matsuura, T., Kazuta, Y., & Yomo, T. (2011). In Vitro Selection of Proteins that Undergo Covalent Labeling with Small Molecules by Thiol-Disulfide Exchange by Using Ribosome Display.?ChemBioChem,?12(6), 962–969.
[115] Welsh, J. P., Bonomo, J., & ? Swartz, J. R.. (2011). Localization of bip to translating ribosomes increases ? soluble accumulation of secreted eukaryotic proteins in an escherichia coli ? cell-free system.?Biotechnology & Bioengineering,?108(8), ? 1739-1748.
[116] Kihara, F., Niimi, T., Yamashita, O., & Yaginuma, T. (2011). Heat shock factor binds to heat shock elements upstream of heat shock protein 70a and Samui genes to confer transcriptional activity in Bombyx mori diapause eggs exposed to 5°C.?Insect Biochemistry and Molecular Biology,?41(11), 843–851.
[117] Iizuka, R., Yamagishi-Shirasaki, M., & Funatsu, T.. (2011). Kinetic study of de novo chromophore maturation of fluorescent proteins.?Biophysical Journal,?100(3), 486a.
[118] Ohtsuka, T., Neki, S., Kanai, T., Akiyoshi, K., Nomura, S. M., & Ohtsuki, T.. (2011). Synthesis and in situ insertion of a site-specific fluorescently labeled membrane protein into cell-sized liposomes.?Analytical Biochemistry,?418(1), 97-101.
[119] Lam, K. N., Van Bakel, H., Cote, A. G., Anton, V. D. V., & Hughes, T. R.. (2011). Sequence specificity is obtained from the majority of modular c2h2 zinc-finger arrays.?Nucleic Acids Research,?39(11), 4680-4690.
[120] De Masi, F., Grove, C. A., Vedenko, A., Alibés, A., Gisselbrecht, S. S., Serrano, L., et al. (2011). Using a structural and logics systems approach to infer bHLH–DNA binding specificity determinants.?Nucleic Acids Research,?39(11), 4553–4563.
[121] Garza-Sánchez, F., Schaub, R. E., Janssen, B. D., & Hayes, C. S. (2011). tmRNA regulates synthesis of the ArfA ribosome rescue factor.?Molecular Microbiology,?80(5), 1204–1219.
[122] Shingaki, T., & Nimura, N.. (2011). Improvement of translation efficiency in an escherichia coli cell-free protein system using cysteine.?Protein Expression & Purification,?77(2), 193-197.
[123] Rosner, K., Kasprzak, M. F., Horenstein, A. C. J., Thurston, H. L., Abrams, J., & Kerwin, L. Y., et al. (2011). Engineering a waste management enzyme to overcome cancer resistance to apoptosis: adding dnase1 to the anti-cancer toolbox.?Cancer Gene Therapy,?18(5), 346-357.
[124] Zhou, Z. P., Shimizu, Y., ? Tadakuma, H., Taguchi, H., Ito, K., & Ueda, T.. (2011). Single molecule imaging of the trans-translation entry process via anchoring of the tagged ? ribosome.?Journal of Biochemistry,?149(5), 609-618.
[125] Chiba, S., Kanamori, T., Ueda, T., Akiyama, Y., Pogliano, K., & Ito, K. (2011). Recruitment of a species-specific translational arrest module to monitor different cellular processes.?Proceedings of the National Academy of Sciences,?108(15), 6073–6078.
[126] Yamamoto, S., Izumiya, H., Mitobe, J., Morita, M., Arakawa, E., & Ohnishi, M., et al. (2011). Identification of a chitin-induced small rna that regulates translation of the tfox gene, encoding a positive regulator of natural competence in vibrio cholerae.?Journal of Bacteriology,?193(8), 1953.
[127] Subtelny, A. O., Hartman, M. C. T., & Szostak, J. W. (2011). Optimal Codon Choice Can Improve the Efficiency and Fidelity of N-Methyl Amino Acid Incorporation into Peptides by In-Vitro Translation.?Angewandte Chemie International Edition,?50(14), 3164–3167.
[128] Handa, Yoshihiro, Inaho, Noriyuki, Nameki, & Nobukazu. (2011). Yaej is a novel ribosome-associated protein in escherichia coli that can hydrolyze peptidyl–trna on stalled ribosomes.?Nucleic Acids Research,?39(5), 1739-1748.
[129] Ramu, H., Nora Vázquez-Laslop, Klepacki, D., Dai, Q., & Mankin, A. S.. (2011). Nascent peptide in the ribosome exit tunnel affects functional properties of the a-site of the peptidyl transferase center.?Molecular cell,?41(3), 321-330.
[130] Panayiotou, C., Solaroli, N., Xu, Y., Johansson, M., & Karlsson, A.. (2011). The characterization of human adenylate kinases 7 and 8 demonstrates differences in kinetic ? parameters and structural organization among the family of adenylate kinase isoenzymes.?Biochemical Journal,?433(3), 527.
[131] Narayan, V., Pion, E., Landre, V., Muller, P., & Ball, K. L.. (2011). Docking-dependent ubiquitination of the interferon regulatory factor-1 tumor suppressor protein by the ubiquitin ligase chip.?Journal of Biological Chemistry,?286(1), ? 607-619.
[132] Lamichhane, T. N., Dinuka, A. N., Duc Anne-Cécile E., Cunningham, P. R., & Chow, C. S.. (2011). Selection of peptides targeting helix 31 of bacterial 16s ribosomal rna by screening m13 phage-display libraries.?Molecules,?16(2), 1211-1239.
[133] Midon, M., Schafer, P., Pingoud, A., Ghosh, M., Moon, A. F., & Cuneo, M. J., et al. (2011). Mutational and biochemical analysis of the dna-entry nuclease enda from streptococcus ? pneumoniae.?Nucleic Acids Research,?39(2), 623-634.
[134] Ma, Z., & Hartman, M. C.. (2012). In vitro selection of unnatural cyclic peptide libraries via mrna display.?Methods in Molecular Biology,?805, 367-390.
[135] Yamaguchi, T., Yoshinaga, N., Yazawa, T., Gen, K., & Kitano, T.. (2010). Cortisol is involved in temperature-dependent sex determination in the japanese flounder.?Endocrinology,?151(8), 3900-3908.
[136] Ueda, T.. (2010). Ribosome display with the pure technology.?Methods in Molecular Biology,?607, 219-225.
[137] Kuruma, Y., Suzuki, T., & Ueda, T.. (2010). Production of multi-subunit complexes on liposome through an e. coli cell-free expression system.?Methods Mol Biol,?607, 161-171.
[138] Shimizu, Y., & Ueda, T.. (2010). Pure technology.?Methods in Molecular Biology,?607, 11-21.
[139] Moritani, Y., Nomura, S. I. M., Morita, I., & Akiyoshi, K.. (2010). Direct integration of cell-free-synthesized connexin-43 into liposomes and hemichannel formation.?Febs Journal,?277(16), 3343-3352.
[140] Lakshmipathy, S. K., Gupta, R., Pinkert, S., Etchells, S. A., & Hartl, F. U.. (2010). Versatility of trigger factor interactions with ribosome-nascent chain complexes.?Journal of Biological Chemistry,?285(36), 27911-27923.
[141] Haruichi, A., & Shaorong, C.. (2010). In vitro genetic reconstruction of bacterial transcription initiation by coupled synthesis and detection of rna polymerase holoenzyme.?Nucleic Acids Research,?38(13), e141.
[142] Theerthagiri, G., Eisenhardt, N., Schwarz, H., & Antonin, W.. (2010). The nucleoporin nup188 controls passage of membrane proteins across the nuclear pore complex.?The Journal of Cell Biology,?189(7), 1129-1142.
[143] Shen, B. W., Heiter, D. F., Chan, S. H., Wang, H., Xu, S. Y., & Morgan, R. D., et al. (2010). Unusual target site disruption by the rare-cutting hnh restriction endonuclease paci. ??Structure,?18(6), 734-743.
[144] Holmqvist, E., Reimeg?Rd, J., Sterk, M., Grantcharova, N., R?Mling, U., & Wagner, E. G. H.. (2010). Two antisense rnas target the transcriptional regulator csgd to inhibit curli synthesis.?EMBO JOURNAL,?29(11), 1840-1850.
[145] Sunami, T., Hosoda, K., Suzuki, H., Matsuura, T., & Yomo, T.. (2010). Cellular compartment model for exploring the effect of the lipidic membrane on the kinetics of encapsulated biochemical reactions.?Langmuir,?26(11), 8544-8551.
[146] Bonomo, J., Welsh, J. P., Manthiram, K., & Swartz, J. R.. (2010). Comparing the functional ? properties of the hsp70 chaperones, dnak and bip.?Biophysical Chemistry,?149(1), 58-66.
[147] Nishiyama, K. I., Maeda, M., Abe, M., Kanamori, T., Shimamoto, K., & Kusumoto, S., et al. (2010). A novel complete reconstitution system for membrane integration of the simplest membrane protein.?Biochemical & Biophysical Research Communications,?394(3), 733-736.
[148] Noto, T., Kurth, H. M., Kataoka, K., Aronica, L., Desouza, L. V., & Siu, K. W. M., et al. (2010). The tetrahymena argonaute-binding protein giw1p directs a mature argonaute-sirna complex to the nucleus.?Cell,?140(5), 692-703.
[149] Matsumura, N., Tsuji, T., Sumida, T., Kokubo, M., Onimaru, M., & Doi, N., et al. (2010). Mrna display selection of a high-affinity, bcl-xl-specific binding peptide.?The FASEB Journal,?24(7), 2201-2210.
[150] Osada, E., Shimizu, Y., Akbar, B. K., Kanamori, T., & Ueda, T.. (2009). Epitope mapping using ribosome display in a reconstituted cell-free protein synthesis system.?Journal of Biochemistry,?145(5), 693-700.
[151] Tanner, D. R., Cariello, D. A., Woolstenhulme, C. J., Broadbent, M. A., & Buskirk, A. R.. (2009). Genetic identification of nascent peptides that induce ribosome stalling.?Journal of Biological Chemistry,?284(50), 34809-34818.
[152] Sumida, T., Doi, N., & Yanagawa, H.. (2009). Bicistronic dna display for in vitro selection of fab fragments.?Nucleic Acids Research,?37(22), e147.
[153] Eriko, M. S., Akihiko, T., Hiroyuki, T., Takuya, M., Tsutomu, N., & Tomoji, K.. (2009). Profiling of gene-dependent translational progress in cell-free protein synthesis by real-space imaging.?Analytical Biochemistry,?394(2), 275-280.
[154] Yamamoto, H., Fukui, K., Takahashi, H., Kitamura, S., Shiota, T., & Terao, K., et al. (2009). ? Roles of tom70 in import of presequence-containing mitochondrial proteins.?Journal of Biological Chemistry,?284(46), 31635-31646.
[155] G?ckler, N., Jofre, G., Papadopoulos, C., Soppa, U., Tejedor, F. J., & Becker, W.. (2009). ? Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation.?FEBS Journal,?276(21), 6324–6337.
[156] Uchida, I., Ishihara, R., Tanaka, K., Hata, E., Makino, S., & Kanno, T., et al. (2009). Salmonella enterica serotype typhimurium dt104 arta-dependent modification of pertussis toxin-sensitive g proteins in the presence of [32p]nad.?Microbiology,?155(11), ? 3710-3718.
[157] Feng, Y., & Cronan, J. E.. (2009). A new member of the escherichia coli fad regulon: transcriptional regulation of fadm (ybaw).?Journal of Bacteriology,?191(20), 6320-6328.
[158] Solaroli, N., Panayiotou, C., Johansson, M., & Karlsson, A.. (2009). Identification of two active functional domains of human adenylate kinase 5.?Febs Letters,?583(17), 2872-2876.
[159] Pfeiffer, V., Papenfort, K., Lucchini, S., Hinton, J. C. D., & Vogel, J.. (2009). Coding sequence targeting by micc rna reveals bacterial mrna silencing downstream of translational initiation.?NATURE STRUCTURAL & MOLECULAR BIOLOGY,?16(8), 840-846.
[160] Estevez-Torres, A., Crozatier, C., Diguet, A., Hara, T., Saito, H., & Yoshikawa, K., et al. (2009). Sequence-independent and reversible photocontrol of transcription/expression ? systems using a photosensitive nucleic acid binder.?Proceedings of the National Academy of Sciences,?106(30), 12219-12223.
[161] Estevez-Torres, A., Crozatier, C., Diguet, A., Hara, T., Saito, H., & Yoshikawa, K., et al. (2009). Sequence-independent and reversible photocontrol of transcription/expression systems using a photosensitive nucleic acid binder.?Proceedings of the National Academy of Sciences,?106(30), 12219-12223.
[162] Takahashi, S., Iida, M., Furusawa, H., Shimizu, Y., Ueda, T., & Okahata, Y.. (2009). Real-time monitoring of cell-free translation on a quartz-crystal microbalance.?Journal of the American Chemical Society,?131(26), 9326-9332.
[163] Kuroha, K., Horiguchi, N., Aiba, H., & Inada, T. (2009). Analysis of nonstop mRNA translation in the absence of tmRNA inEscherichia coli.?Genes to Cells,?14(6), 739–749.
[164] Osada, E., Shimizu, Y., Akbar, B. K., Kanamori, T., & Ueda, T.. (2009). Epitope mapping using ribosome display in a reconstituted cell-free protein synthesis system.?Journal of Biochemistry,?145(5), 693-700.
[165] Niwa, T., Ying, B. W., Saito, K., Jin, W., Takada, S., & Ueda, T., et al. (2009). Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of escherichia coli proteins.?Proceedings of the National Academy of Sciences,?106(11), 4201-4206.
[166] Robin, Togashi, S., Ryder, D. M., Wall, A. G., & J., G.. (2009). Trigger factor from the psychrophilic bacterium psychrobacter frigidicola is a monomeric chaperone.?Journal of Bacteriology,?191(4), 1162-1168.
[167] Matsuura, T., Kazuta, Y., Aita, T., Adachi, J., & Yomo, T.. (2009). Quantifying epistatic interactions among the components constituting the protein translation system.?Molecular Systems Biology,?5(1).
[168] Zheng, Y., Posfai, J., Morgan, R. D., Vincze, T., & Roberts, R. J.. (2009). Using shotgun sequence data to find active restriction enzyme genes.?Nucleic Acids Research,?37(1), e1.
[169] Hosoda, K., Sunami, T., Kazuta, Y., Matsuura, T., Suzuki, H., & Yomo, T.. (2008). Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction.?Langmuir,?24(23), 13540-13548.
[170] Terashima, H., Abe-Yoshizumi, R., Kojima, S., & Homma, M.. (2008). Cell-free synthesis of the torque-generating membrane proteins, poma and pomb, of the na+-driven flagellar motor in vibrio alginolyticus.?Journal of Biochemistry,?144(5), 635-642.
[171] Kazuta, Y., Adachi, J., Matsuura, T., Ono, N., Mori, H., & Yomo, T.. (2008). Comprehensive ? analysis of the effects of escherichia coli orfs on protein translation reaction.?Molecular & Cellular Proteomics,?7(8), 1530-1540.
[172] Maki, K., Uno, K., Morita, T., & Aiba, H.. (2008). Rna, but not protein partners, is directly ? responsible for translational silencing by a bacterial hfq-binding small rna.?Proceedings of the National Academy of Sciences,?105(30), 10332-10337.
[173] Uemura, S., Iizuka, R., Ueno, T., Shimizu, Y., Taguchi, H., & Ueda, T., et al. (2008). Single-molecule imaging of full protein synthesis by immobilized ribosomes.?Nucleic Acids Research,?36(12), e70.
[174] Uemura, S., Iizuka, R., Ueno, T., Shimizu, Y., Taguchi, H., & Ueda, T., et al. (2008). Single-molecule imaging of full protein synthesis by immobilized ribosomes.?Nucleic Acids Research,?36(12), e70.
[175] Sako, Y., Morimoto, J., Murakami, H., & Suga, H.. (2008). Ribosomal synthesis of bicyclic ? peptides via two orthogonal inter-side-chain reactions.?Journal of the American Chemical Society,?130(23), 7232-7234.
[176] Vazquezlaslop, N., Thum, C., & Mankin, A. S.. (2008). Molecular mechanism of drug-dependent ribosome stalling.?Molecular Cell,?30(2), 190-202.
[177] Sako, Y., Goto, Y., Murakami, H., & Suga, H.. (2008). Ribosomal synthesis of peptidase-resistant peptides closed by a nonreducible inter-side-chain bond.?ACS Chemical Biology,?3(4), 241-249.
[178] Urban, J. H., & Vogel, J.. (2008). Two seemingly homologous noncoding rnas act hierarchically to activate glms mrna translation.?PLoS Biology,?6(3), e64.
[179] Ozaki, Y., Suzuki, T., Kuruma, Y., Ueda, T., & Yoshida, M.. (2008). Unci protein can mediate ring-assembly of c-subunits of fof1-atp synthase in vitro.?Biochemical & Biophysical Research Communications,?367(3), 663-666.
[180] Sakamoto, A., Yamagishi, M., Watanabe, T., Aizawa, Y., Kato, T., & Funatsu, T.. (2008). Fluorescence labeling of a cytokine with desthiobiotin-tagged fluorescent puromycin.?Journal of Bioscience & Bioengineering,?105(3), 238-242.
[181] Goto, Y., Ohta, A., Sako, Y., Yamagishi, Y., Murakami, H., & Suga, H.. (2008). Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides.?ACS Chemical Biology,?3(2), 120-129.
[182] Kawakami, T., Murakami, H., & Suga, H.. (2008). Messenger rna-programmed incorporation of multiple n-methyl-amino acids into linear and cyclic peptides.?Chemistry & Biology,?15(1), 32-42.
[183] Neely, R. K., & Roberts, R. J.. (2008). The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs.?BMC Molecular Biology,?9(1), 48.
[184] Hillebrecht, J. R., & Chong, S.. (2008). A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based.?BMC Biotechnology,?8(1), 58.
[185] Yanagida, H., Matsuura, T., & Yomo, T.. (2008). Compensatory evolution of a ww domain variant lacking the strictly conserved trp residue.?Journal of Molecular Evolution,?66(1), 61-71.
[186] Ohta, A., Murakami, H., Higashimura, E., & Suga, H.. (2007). Synthesis of polyester by means of genetic code reprogramming.?Chemistry & Biology (Cambridge),?14(12), 1315-1322.
[187] Doi, Y., Ohtsuki, T., Shimizu, Y., Ueda, T., & Sisido, M.. (2007). Elongation factor tu mutants expand amino acid tolerance of protein biosynthesis system.?Journal of the American Chemical Society,?129(46), 14458-14462.
[188] Murtas, G., Kuruma, Y., Bianchini, P., Diaspro, A., & Luisi, P. L. (2007). Protein synthesis in ? liposomes with a minimal set of enzymes.?Biochemical and Biophysical Research Communications,?363(1), 12–17.
[189] Sharma, C. M., Darfeuille, F., Plantinga, T. H., & Vogel, J.. (2007). A small rna regulates multiple abc transporter mrnas by targeting c/a-rich elements inside and upstream of ? ribosome-binding sites.?Genes & Development,?21(21), ? 2804-2817.
[190] Kojima, K., Oshita, M., Nanjo, Y., Kasai, K., Tozawa, Y., Hayashi, H., & Nishiyama, Y. (2007). Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II.?Molecular Microbiology,?65(4), 936–947.
[191] Sando, S., Abe, K., Sato, N., Shibata, T., Mizusawa, K., & Aoyama, Y. (2007). Unexpected Preference of theE. coliTranslation System for the Ester Bond during Incorporation of Backbone-Elongated Substrates.?Journal of the American Chemical Society,?129(19), 6180–6186.
[192] Lakshmipathy, S. K., Tomic, S., Kaiser, C. M., Chang, H. C., Genevaux, P., & Georgopoulos, C., et al. (2007). Identification of nascent chain interaction sites on trigger factor.?Journal of Biological Chemistry,?282(16), 12186-12193.
[193] Matsuura, T., Yanagida, H., Ushioda, J., Urabe, I., & Yomo, T. (2007). Nascent chain, mRNA, and ribosome complexes generated by a pure translation system.?Biochemical and Biophysical Research Communications,?352(2), 372–377.
[194] Ohashi, H., Shimizu, Y., Ying, B. W., & Ueda, T.. (2007). Efficient protein selection based on ribosome display system with purified components.?Biochemical & Biophysical Research Communications,?352(1), 270-276.
[195] Udagawa, T., Shimizu, Y., & ? Ueda, T.. (2004). Evidence for the translation initiation of leaderless mrnas by the intact 70 s ribosome without its dissociation into subunits in ? eubacteria.?Journal of Biological Chemistry,?279(10), 8539-8546.
[196] Ueno, S., Arai, H., Suzuki, M., & Husimi, Y.. (2007). An mrna-protein fusion at n-terminus for evolutionary protein engineering.?International Journal of Biological Sciences,?3(6), 365-374.
[197] Narita, A., Ogawa, K., Sando, S., & Aoyama, Y.. (2007). cis-regulatory hairpin-shaped mrna encoding a reporter protein: catalytic sensing of nucleic acid sequence at single nucleotide resolution.?NATURE PROTOCOLS,?2(5), 1105-1116.
[198] Yoshimori, A., Sakai, J., Sunaga, S., Kobayashi, T., & Tanuma, S. I.. (2007). Structural and ? functional definition of the specificity of a novel caspase-3 inhibitor, ac-dnld-cho.?BMC Pharmacology,?7(1), 8.
[199] Kawahashi, Y., Doi, N., Oishi, Y., Tsuda, C., Takashima, H., & Baba, T., et al. (2006). High-throughput fluorescence labelling of full-length cdna products based on a reconstituted ? translation system.?Journal of Biochemistry,?141(1), 19-24.
[200] Saguy, M., Gillet, R., Skorski, P., Hermann-Le Denmat, S., & Felden, B.. (2007). Ribosomal protein s1 influences trans-translation in vitro and in vivo.?Nucleic Acids Research,?35(7), 2368-2376.
[201] Zheng, Y., & Roberts, R. J.. (2007). Selection of restriction endonucleases using artificial cells.?Nucleic Acids Research,?35(11), e83.
[202] Setoguchi, K., Otera, H., & Mihara, K.. (2006). Cytosolic factor- and tom-independent import of c-tail-anchored mitochondrial outer membrane proteins.?EMBO JOURNAL,?25(24), 5635-5647.
[203] Sunami, T., Sato, K., Matsuura, T., Tsukada, K., Urabe, I., & Yomo, T.. (2006). Femtoliter compartment in liposomes for in vitro selection of proteins.?Analytical Biochemistry,?357(1), 128-136.
[204] Ying, & B.-W. (2006). Co-translational binding of groel to nascent polypeptides is followed by post-translational encapsulation by groes to mediate protein folding.?Journal of Biological Chemistry,?281(31), 21813-21819.
[205] Ishihara, N., Fujita, Y., Oka, T., & Mihara, K.. (2006). Regulation of mitochondrial morphology through proteolytic cleavage of opa1.?EMBO JOURNAL,?25(13), 2966-2977.
[206] Groves, M., Lane, S.,Douthwaite, J., Lowne, D., Rees, D. G., & Edwards, B., et al. (2012). ? Affinity maturation of phage display antibody populations using ribosome display.?Methods in Molecular Biology,?313(1), 129-139.
[207] Villemagne, D., Jackson, R., & Douthwaite, J. A.. (2006). Highly efficient ribosome display selection by use of purified components for in vitro translation.?Journal of Immunological Methods,?313(1-2), 140-148.
[208] Yamamoto, T., Izumi, S., & Gekko, K.. (2006). Mass spectrometry of hydrogen/deuterium exchange in 70s ribosomal proteins from e. coli.?Febs Letters,?580(15), 0-3642.
[209] Shimizu, Y., & Ueda, T.. (2006). Smpb triggers gtp hydrolysis of elongation factor tu on ribosomes by compensating for the lack of codon-anticodon interaction during trans-translation initiation.?Journal of Biological Chemistry,?281(23), 15987-15996.
[210] Seebeck, F. P., & Szostak, J. W.. (2006). Ribosomal synthesis of dehydroalanine-containing peptides.?Journal of the American Chemical Society,?128(22), 7150-7151.
[211] Kubota, S., Kubota, H., & Nagata, K.. (2006). Cytosolic chaperonin protects folding intermediates of gβ from aggregation by recognizing hydrophobic β-strands.?Proceedings of the National Academy of Sciences of the United States of America,?103(22), 8360-8365.
[212] Muto, H., Nakatogawa, H., & Ito, K.. (2006). Genetically encoded but nonpolypeptide prolyl-trna functions in the a site for secm-mediated ribosomal stall.?Molecular Cell,?22(4), 545-552.
[213] Murakami, H., Ohta, A., Ashigai, H., & Suga, H.. (2006). A highly flexible trna acylation method for non-natural polypeptide synthesis.?Nature Methods,?3(5), 357-359.
[214] Umekage, S., & Ueda, T.. (2006). Spermidine inhibits transient and stable ribosome subunit dissociation.?Febs Letters,?580(5), 0-1226.
[215] Itoh, H., Kawazoe, Y., & Shiba, T.. (2006). Enhancement of protein synthesis by an inorganic polyphosphate in an e. coli cell-free system.?Journal of? Microbiological Methods,?64(2), 241-249.
[216] Ogawa, A., Sando, S., & Aoyama, Y.. (2010). Termination‐free prokaryotic protein translation by using anticodon‐adjusted e. coli trnaser as unified suppressors of the ? uaa/uga/uag stop codons. read‐through ribosome display of full‐length dhfr with translated utr as a buried spacer arm.?Chembiochem,?7(2), 249-252.
[217] Tomic, S., Johnson, A. E., Hartl, F. U., & Etchells, S. A. (2005). Exploring the capacity of trigger factor to function as a shield for ribosome bound polypeptide chains.?FEBS Letters,?580(1), 72–76.
[218] Hallier, M. (2006). Small protein B interacts with the large and the small subunits of a stalled ribosome during trans-translation.?Nucleic Acids Research,?34(6), 1935–1943.
[219] Jarutat, T., Frisch, C., Nickels, C., Merz, H., & Knappik, A.. (2006). Isolation and comparative characterization of ki-67 equivalent antibodies from the hucal? phage display library.?Biological Chemistry,?387(7).
[220] Josephson, K., Hartman, M. C. T., & Szostak, J. W. (2005). Ribosomal Synthesis of Unnatural Peptides.?Journal of the American Chemical Society,?127(33), 11727–11735.
[221] Shimizu, Y., Kanamori, T., & Ueda, T.. (2005). Protein synthesis by pure translation systems.?Methods (Amsterdam),?36(3), 299-304.
[222] Sando, S., Kanatani, K., Sato, N., Matsumoto, H., Hohsaka, T., & Aoyama, Y.. (2005). A ? small-molecule-based approach to sense codon-templated natural-unnatural hybrid peptides. selective silencing and reassignment of the sense codon by orthogonal reacylation stalling at the single-codon level.?Journal of the American Chemical Society,?127(22), 7998-7999.
[223] Fukushima, K., Ikehara, Y., & Yamashita, K. (2005). Functional Role Played by the Glycosylphosphatidylinositol Anchor Glycan of CD48 in Interleukin-18-induced ? Interferon-γ Production.?Journal of Biological Chemistry,?280(18), 18056–18062.
[224] Yano, M., Okano, H. J., & Okano, H.. (2005). Involvement of hu and heterogeneous nuclear ribonucleoprotein k in neuronal differentiation through p21 mrna post-transcriptional regulation.?Journal of Biological Chemistry,?280(13), 12690-12699.
[225] Ying, B. W., Taguchi, H., Kondo, M., & Ueda, T.. (2005). Co-translational involvement of the chaperonin groel in the folding of newly translated polypeptides.?Journal of Biological Chemistry,?280(12), 12035-12040.
[226] Tokunaga, M., Mizukami, M., & Tanaka, R.. (2005). Novel processing and localization of cata, ccda associated thiol-disulfide oxidoreductase, in protein hyper-producing bacterium brevibacillus choshinensis.?Protein & Peptide Letters,?12(1), 95-98.
[227] Kuruma, Y., Nishiyama, K. I., Shimizu, Y., Matthias Müller, & Ueda, T.. (2005). Development of a minimal cell-free translation system for the synthesis of presecretory and integral membrane proteins.?Biotechnology progress,?21(4), 1243-1251.
[228] Ying, B.-W., Taguchi, H., Ueda, H., & Ueda, T. (2004). Chaperone-assisted folding of a single-chain antibody in a reconstituted translation system. Biochemical and?Biophysical Research Communications,?320(4), 1359–1364.
[229] Asai, T., Takahashi, T., Esaki, M., Nishikawa, S. I., Ohtsuka, K., & Nakai, M., et al. (2004). ? Reinvestigation of the requirement of cytosolic atp for mitochondrial protein import.?Journal of Biological Chemistry,?279(19), 19464-19470.
[230] Kawano, M., Suzuki, S., Suzuki, M., Oki, J., & Imamura, T.. (2004). Bulge- and basal layer-specific expression of fibroblast growth factor-13 (fhf-2) in mouse skin.?Journal of Investigative Dermatology,?122(5), 1084-1090.